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TECHNICAL MEMORANDUM X-64851

DESIGN OF A DIGITAL CONTROLLER FOR SPINNING FLEXIBLE SPACECRAFT

Summary

A new approach to digital control system design is applied to the analysis and de-
sign of a practical onboard digital attitude control system for a class of spinning vehicles
characterized by a rigid body and two connected flexible appendages. The appro;ach used
is to design a continuous-data control system that will provide a satisfactory system re-
sponse. Then, using the digital redesign method, a digital controller with onboard digital
computer is designed to provide a digital control system whose states are similar to those
of the continuoys system at sampling instants. The simplicity of application of this ap~
proach is indicated by example. The example, using spinning Skylab parameters, is
used to substantiate the conclusions. |

I. Introdnction

tn 1975,NASA initiated a set of studiee of several Skylab configurations, includ-
ing a spinning vehicle configuration. (The spin would provide an artificial-gravity
environment to assess and compare the physiological benefits and problems of prolonged
zero-gravity and artificial-gravity environments.) The study proceeded generally along two

mutually reinforcing directions. In one case, a large-scale digital simulation of the

Presented as Paper 73-894 at the AIAA Guidance and Control Conference,
Key Biscayne, Fla., Aug. 20-22, 1973.

Indexes Categories: Spacecraft Attitude Dynamics and Control; Navigation,
Control, and Guidance Theory.



spinning system of connected flexible and rigid structures was developed, first devis-
ing a program for obtaining the eigenvalues and eigenvectors and then simulating the
truncated equations for motion. (1), (2), (3) In order to develop faith in the response

of the large scale simulation and to obtain characteristic numerical .values for the |
control system parameters, a simplified analytically-tractable model was developed and
analyzed in detail. (4),(5) While the model was developed to meet Skylab demands, it is
applicable to other spinning bodies with flexible attached members. It consists of a
single rigid-core body with two attached flexible massless bhooms having tip masses

(Fig. 1-1). Active closed loop attitude control is implemented by applying control
torques to the vehicle to compensate fgr the eflect of disturbance torques. (In the Skylab
example, existing Skylab onboard sensors and momentum exchange systems are used for
generating control error signals and torques. ){6)

The approach used is to design a continuous-data control system that will
provide a satisfactory system response. Then using several recently developed
techniques, the continuous control system n adel is redesigned to provide a digital
control system. The objective of the digital redesign is to provide a system whose
states are identical to those of the continuous system at sampling instants.

II. Equations of Motion

The spinning flexible vehicle is assumed to be modeled as shown in Fig. 1-1.
For the entire vehicle, equations of displacement and rotation are written using Newton-
Euler relatior;s. The equations are based on the assumption that the axis of maximum
moment of inertia of the overall vehicle does not coincide with the desired spin axis --
usually aﬁ axis normal to the solar panels and pointed toward the sun. In that case, the

overall mass distribution of the system must be altered to align the two axes-hence, the



inclusion of b‘doms (assumed to be massless and flexible) with tip masses. It is assumed
that the booms are attached to the core rigid body at the axis of rotation of the overall
System. The basic coordinate system's origin is at the steady-state mass center of the
overall vehicle, and the axes coincide with the principal axes of inertia of the steady-state
configuration of the vehicle. (In steady-state, the vehicle rotates about the major
Principal axis.)
The nonlinear equation defining the rotational motion of the overall vehicle

(Fig. 1-1) is obtained from the Euler relation and becomes

I-_IEI=H.QJ‘+%;9_+£XJ{E-Q+C% pxp dm (2--1}"
where T is the applied torque vector, H is the angular momentum vector, T is the
inertia diadic of the entire vehicle, w is the rotation vector of the entire vehicle, p is
a generic vector joining the spinning steady-state location of tﬁe vehicle center of mass (CM)
to  each of the mass elements dm of the flexible appendages, the closed overdot (*)

' represents the time derivative in the inertial frame s+ and the open ovefdot (%) represents
the time derivative in a frame that is fixed with respect to the core rigid body. The
nonlinear equation representing translational motion of each sth mass element (ms) of
the flexible appendages is obtained from the Newton relation and becomes

Fo=m® &+ &+ 1% &)
908 008

8.2 0o o o
mmo{X+c+2gxcHuxctoxwxe) +¥5 44

+20x (2 + 2%+ §x % + 1Y +ux fux @ 09 (2-2)

where F is thel applied and structural connection force vector, § is the inertial
position vector from an inertially fixed reference point to the instantaneous location of
the CM, ¢ is the vector from the CM to the nominal spinning steady state location of
the CMg, r° is a vector from CMg to the spinning steady state location of m¥, and u®
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is a vector from the spinning steady state location of ms to ifs actual instantaneous location.
. If now these equations are linearized as perturbations about the Spinning steady

state, perturbation equations (2-3) and (2-4) result. Ounly the rotation_al relations ha\(e

been retained, and the effect of the center of mass motion with respect to the body is

neglected. The contribution of mass center motion due to flexible appendage motion and

orbital dynamics is ighored. The resulting three linearized equations of motion are

written explicitely in matrix notation:

T
T=1Iw+QIw +WI 0+ 0IQ+ mf (2rTuBE - - uBrT) Q+
T
mer 8 PE- P:T - P jor m¥FER s ml v (2-3)

where Iis the moment of inertia matrix of the entire vehicle, Q= [Q.l s Ka, QSJT is the
nominal spin rate, w ={w, w,, WSJT is the variation of spin speed, E is an identity
matrix, m is the mass of each flexible boom's tip mass, uB =yl - ua, where u! and u?
represent the displacement of the tip masses of such of the two flexible booms from their
spinning steady state location to their instantaneous loecation, and r = [0,I;, 1“3]T represents
the distance of the tip mass center of mass fr« 1 the vehicle center of mass, A set of
thrée equations describes the skéew symmetric mode of the attached booms znd tip masses:

mi® + mB + 2m?1’)ﬁ8 + (Kf + m5§’5‘+K:’-)uB-m%‘ﬁ; +m(OW+W Dr=0 (2-4)
where KE =diag k,, ko, kyland K: represent the elastic and geometric stiffness,
respectively, of the attached flexible booms (represented as massless cantilever beams
with attached discrete tip masses), and DB =diag [d,, d o3 d5]1s the structural damping.
Stretching of the booms due to centrifugal force is represented by K:

Active closed loop control is imﬁlemented by applying control torques to the
vehicle. It is assumed that the 3-axis of the body-~fixed coordinate frame must be held

fixed in inertial space. This is achieved by applying control torques to the vehicle to
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compensate for the effect of disturbance torques. These control torques must in some
manner depend on error signals that are proportional both to the angle between the
3-axis and the inertial reference vector and to its time derivative. This information
can be generai:ed if the spacecraft hardware includes, for example, ‘sun sensors and
rate gyros and the sun is used in place of an inertial reference. The sun sensor measure
the angular rotations ¢ s ¢, (@8 also indicated for the si_mplified model of Fig. 1-1), and
rate gyros measure the angular velocities Wy, W,. The control torques T, , T, may be
provided by momentum exchange devices such as control moment gyroscopes and
augmented if necessary by a mass expulsion system; for simplicity it generally is
assumed that T3 = 0. (It is observed that the existing Skylab, which is used as a model
to obtain numerical results herein, has onboard sun sensors, rate gyros, CMG's, and
4 mass expulsion system.)(6) A more complete derivation of the equations of motic;n is
included in Ref. 7.

A linear control postulate (termed Conirol Law 1) can be formulated as

T ay api | B Bl |w -
"o + (2-5)

T, a3y X2 ¢ By Baz| | W2

where, from kinematic relations,

w,? l‘- 1 0o olig 0 0] [e¢]
LA ; = ‘ 0 -1 ¢ &}a +{=-0 0 0 ! Pz ' (2-6)
w,| [ 0 0 -1]i4, 0 0 0, g

An estimate of numerical values for the control gains may be obtained by an analysis of
a simplified model of the vehicle. In that case - as shown subsequently - continuous-
data control system gains for the output feedback of Eq. (2-5) may be determined by
application of D-decomposition and parameter mapping techniques. (8) Alternately,

optimal gains (Control Law 2) may be determined for complete state feedback by a

5



linear guadratic loss program to minimize a performance index. (9) Then the continuous
control system model gains are altered to provide the desired system dynamic response

when it is modeled as a digital system.

When Eqs.(2~3), (2-4), and (2-6) are grouped in the conventional manner, the
following set of equations results, assuming the steady state spin Q) is about the 3-axis.
In this case Ki: =diag [m(?, 0, mQ=].

My" + Dy' + Ky =~ Fy 2-7

where ' refers to differentiation with respect to T = O,

T
Yy =100y Pas DPas Hyspgs Hal s (2-8)

T T
y=Ivi: vz, w1 =[T/1,(R, T,/1,C5, Ta /150F ] (2-9)
and matrices M, D, K, and F are given by Eq. {2-10) through (2-13). The symbols used

are defined s
Ky= -~ I)/I, X, = I - 1,)/1,, YT anI‘zz/Ii > By = (‘-‘i - uia)/21"2
A7 d/m0f =k /ma%, (-1, 2, 3), ¢ ~ T/,
In the steady state, the principal axes of inertia of the total vehicle coincide with the

1, 2, 3 axes and the principal ﬁloments of inertia are I, I,, I, respectively, with

I, <1

1 <1z <I,. The stiffness of the nonrotating booms in the directions of the 1, 2, 3

axes is represented by ki and the structural damping by di'

1 0 0 0 M N
0 i_*—lé: 0 &, 0 0
M= |-¥, 0 0 0 0 Y, (2-10)
0 0 1 Vs 0 0
0o -t 1 1 o g
| & 0 0 0 1 0 |




0 -(1+K,) © 2ky, 0 0
14K, 0 0 0 28y, 0
0 0 0 0 0 Y13
D=
0 0 0 0 -2y; 0
| 0 -2¢ 2 2 Az 0
1
1+K
(—]
0 Kz(l—Kz) 0 £y, 0 0
-Y -t 0 0 0 ¥,(08+1)
K= .
0 0 0 0 0 0
0 E 0 ot 0 0
-¢ 0 0 0 o1 o |
1 ¢ ¢ o0 0 o T
F=|0 1 0O 0 0 o0

L=
[
<
—
=]
(=]

and

- L 0 0
-MF=| 0 0 0

0 gnef, -(l~£2nel,

0 &f,
0 0
fa 0

_(fl'

(2-11)

(2-12)

(2-13)

(2-14)

(2-15)



fi=1/[1-v1+E%)], (2-16)
f;=1/(1 il £ 52710)9 (2-17)
c=(1-K)/(1+K) o (2-18)

Eq. (2-7) may be cast in state equation form:

z’=Az + By (2-19)
where
be IT
z =1yiyl, - {2-20)
_[-_9 ___E _]
A= [-M_‘K {1 -M™ID 12-21)
B =056}~ M~ IF] . (2-22)

and E; isthe 6 x 6 identity matrix and 0, is the 3 x 6 null matrix.

It has been shown that when [ is sufficiently small that it may be ignored, the
equations of mqtion (2-7) uncouple into two s=ts of equations: one describing the wobble
mo.tion (described by u; amd w p WaOr 9, ¢y ) and one describingthe in-plane motion
(described by y, PRI and w, or ¢s)s {(3) The resulting equation for wobble dynamics can

be written as

x'=Ax + Bu (2-23)

where

x= (B Pos sy Sy By 0417 | (2-24)



[0 0 0 1 0 0

0 0 0 0 1 0

0 ] 0 0 0 1

A=l B owed o LK pas (2-25)

1-9 1-y, v, 1m

0 K, 0 ~(1-K;) 0 0

Kl Y- (O2+1) 0 1+K, =-As

| 1-% 1-y, 1y, 17

For control torque exerted only about the 1-axis,

u=v=T/i02 (2-26)

and

B = 10, 0,0,-1/(1-7,),0,~1/@-)1 " (2-27)

In th: design examples that follow, numerical values typical of the spinning

Skylab configuration are used and repeated in the table. (3)

Table 2-1
I, = 1.25 x 10%gm® r=0 m = 227kg
I, =6.90 x 10°%kgm? TI',=23.3m k; =k;=146N/m

,=7.10 x 106kgrr%2 ~=-1.53m k, =7, 4x10*N/m
1 1
d,=dy~0.04(kym)*> d,=0.04(k;m)® Q =0.6s"!

IMl. Digital Approximation by Point-by-Point State Comparison

The problem considered in this paper is that of approximating a continuous-
data feedback system by inserting sample-and-hoid devices, and thén modifying the in-
put and the feedback gains of the system so that the response of the sampled-data model
is as close to that of the original system as possible.

Consider that the continuous-data system as shown in Fig. 3-1 isdeseribed by the

following time-invariant dynamic equations;



&y = Ax _{t) +Bu {1 (3-1)
O = EOz() - G(O)x (1) (3-2)
where

:_cc(t) =n x 1 state veétor

gc(t) =m x 1 control vector

r(t}) =m x 1 input vector

A =n x n coefficient matrix

B =nxm coefficient matrix

E{0) =m x m forward gain matrix

G{0) = m x n feedback matrix
The initial state is given by _)gc(to). Substituting Eq. (3-2) into Eq. (3-1) yields

X

& =[A - BGO)] x () + BEQO)() (3-3)

The solution of Eq. (3-3) fort 2t  is

| t
x - A-BG(O)] (t'tO)ggc(t o +[ e A BOONE- T p 0y rirya (3-4)
tO
where
oA-BGO] () _ 2 1A - BGO)T -t ) (3-5)

j=o I
The block diagram of the sampled-data system which is to approximate the

system of Fig. 3-1 is shown in Fig. 3-2. The outputs of the sample-and hold-devices
are a series of step functions with amplitudes denoted by _qs(kT) for kT <t <(k + 1)T.
The notations, G(T) and E(T), denote the feedback gain and the forward gain of the

sampled-data system, respectively. The dynamic equations for the sampled-data

model are:
X () = Ax (1) + Bu (KT), x_(t ) given (3-6)
1, (kT) = E(T)r(kT) - G(T)x, (kT) (3-7)

10



for kT<t £ (k + 1)T, tos t.
The A and B matrices in Eq. (3-6) are identical to those of Eq. (3-1). Substitut-

ing Egq. (3-7) into Eq. (3-6) yields

& (5 = Ax_(t) + BE(D)X (KT) - G(T)x (KT)] (3-8)
for kT<t< (k + I)T.

The solution of Eq. (3-8) with t = (k + 1)T and

ty =KkT is
(k+1)T _
x [(k + 1T] = (eAT - ATy, BG(T))_:E (kT)
-8 S
kT
(k+1)T _
+ eA (kT+T-7 )d‘r BE(T)r (kT) (3-9)

kT

The probiem is to find E(T} and G(T) so that the states of the sampled-data
model are as close as possible to that of the continuous ~data system at the sampling
instants, for a'g'wen input r{t). Fu'rthermore, in srder that the solution for E(T) is
independent of i(t) it is necessary to assume that r(1) = r(kT) for kT<t <(k + 1)T.
Therefore, effectively, the input of the continuous-data system of Fig. 3-1 is assumed to
pass through a sample-and-hold device. The above assumption would not affect the solution
if r(r) bas step functions as its elements. However, if the inputs are other than step
functions, the approximation is a good one for small sampling periods.

Now letting t, = kT and t = (k + 1)T in Eq. (3-4), and assuming r(r) = r(kT) over

one sampling period, we have

%, [(k+ 1)T) = A" BOOIT

x (kT)
.9
1)T
N fﬂ”’ o[A-BGO) I T+T-7 (3-10)
kT d7 BE(0)r (kT),

kT<t< &k + 1)T.

11



The responses of Eq. (3-9) and Eq. (3-10) will matchatt = (k + 1)T for an
arbitrary initial state Ec(kT) and an arbitrary input r(kT}), if and only if the following
two equations are satisfied:

(k+1)T

- T AT
e[A BG(0] LR j
kT

eA (kT+T-71 d7BG(T) (8-11)

and

(k+1)TelA “BGONETT g (0)r (<T)

(kﬂ)TeA KT+T-T) gy pE(T)E (KT) =
kT (3~12})
Let )= (k + )T - . Then Eas. (3-11) and (3-12) become
[A-BG(O)IT AT [ Ax
e —e" - j ¢ d\ BG(T) (3-13)
0 .
T T
f e*dy BE(T) = f A~BGOM 5 BE(0) (3-14)
0 0
Eqs. (3-13) and (3-14) may be written in the simplified matrix form,
(T) =- 8(TYG(T) (3-15)
and
8(T)E(T) = 8,(T)E(0) (3-16)
where
D(T) = o 1A - BGOIT_AT (3-17)

12



T
om = | et (3-18)

8

M= :rr o A-BG(0)]A dAB (3-19)
0

In Egs. (3-15) and (3~16) if the number of unknowns equals the number of equations,
m e~ n and if §(T) is nonsingular, then unique solutions of Egs. {3~15) and (3-16) exist
and are given by

G(T) = - 8™ {(T)D(T) - (3-20)
and

E(T) = ¢~ {T)8c(T)E(0) | (3-21)

Generally speaking, the systems of equations of Eqs. (3-15) and (3-16) are
not consistent for the case where n >m, and thus not all of the statés of the continuous
and sampled systems can be made to match at t'.e end of each sampling period.

Although it is not pessible to match all of the states it can be shown that it is
possible to match some of the states or algebraic sums of the states at each sampling
period. Multiplying both sides of Eq. (3-15) by a constant m x n matrix H gives,

HD(T) = - Ho(TYG(T) (3-22)
The above equation consists of mn scalar equations and mn unknownsg. If H is chosen
such that Ho(T) is nonsingular, Eq. (3-22) may be solved for a solution, GW(T),

G_(T) =~ [Ho(T)]'HD(T) | (3-23)
Similarly, Eq. {3-16) may be solved for a solution EW(T),

E_(T) = [He(T)] ™ 'He (T)E(0) (3-24)
In general, the choice of the elements of H is governed by which combinations of the

states are to be mateched.
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IV. Digital Redesign of the Wobble Dynamics

In this section the point-by-point method of digital redesign is applied to the
wobble dynamics of the spinning vehicle. I it is assumed that [;=0, f.he state equations
for the wobble dynamics can be written as Egs. (2-23)-(2-27).

The control vector for the continuous system is

u, =E@0)r - GO)x, 4-1)
where E(0) and G(0) represent the forward and feedback gains, respectively.

Two control postulates are investigated for this system. Using Control Law 1
and numerical values from Table 2-1, one obtains

3(0) ={0, -4.63, 0, -1.27, 0, 0], E{0) =1. {4-2)

Control Law 2 requires feedback from ea~h state and is written as

G(0) ={-1.263, 0,777, 0.172, -2.768, 1.792, 0.095], E(0) = 1. (4-3)

The control of the wobble dynamics is digitally redesigned with both control laws
and with T=0.2s and H =[1, 1, i, 1, 1, 1. The choice of H weighs all the states
equally and is natural for a single-input system. The gain matrices for the sampled-
data control system are obtained by using Egs. (3-23) and (3~24), and are,

Control Law 1

G ={-0.0049, -3.95, 0.048, -1.08, -0.52, 0.0047], E_ = 0.86. (4-4)

Control Law 2

GW =[-0.92, 0.456, 0.196, -2.14, 1,13, 0.09], E, = 0.728. (4-5)

The continuous and sampled-datasystems are simulated using both control laws.
It is found that in each case the states of the digital system closely match those of the
continuous system for this choice of sampling period. Figures 4-1 and 4-2 show the
state trajectories g, and, for the continuous and sampled-data systems with Control L .w 1.

14



V. Optimal Regulation and Digital Redesign of the Twelfth Order Model

In this section the twelfth~order model is optimally regulated and digitally
redesigned by the point-by-point method of state comparison. The optimal regulation is
achieved by ealculating the optimal control law associated with the linear regulator
design.

It has been determined that the overall system is uncontrollable with only one input
to one of the wobble axes. When perturbed, thec;?:3 state changes to ar new value which
means that the ¢, state increases without bound as time increases. Since for spin about
the 3-axis the ¢4 state is unimportant, only control of the ‘733 state is of importance. An
additional input v, has consequently been provided to one of the spin axes to insure
controllability. Since it is of interest to regulate only ¢, and not ¢; about their zero
references, the state, ¢,, is deleted when calculating the optimal feedback gains.

The state equations for the twelfth-order model are given by E'qs. (2-16)-(2-22).
These equations are reduced to an eleventh-order system by deleting the state ¢4 - This
system is optimized by the linear quadratic loss criterion for the following weighting
matrices: Q@ =1, R=1. The 66th order algebraic Riccati equation associated with this
problem is solved by the eigenvector method to yield the following feedback gains (10)

G(9) - -0.613 0.302 -0.008 -0.094 -1.29 -1,783 .0820 0.06229 0.034 0.002F -90.457 (5_1)
-0.043 -0.053 0.93 ~1.82 -0,0515 -0.01§ -0.058 -1.0 0.918 0.0043 0.0082 '

The digital redesign of this system is performed by use of the point-by-point method of
partial matching, The weighting matrix H is chosen as
H=(11001110001)
06 01 1009011 1 ¢ {(5-2)
and the feedback gains for the digital system are determined for two different sampling
periods, T =0,2s and T = 0.8s. The choice of H is such that matching is obtained for he

sum of the states of the wobble dynamics as well as the sum of the states of the spin

15



dynamics for each sampling instant. With T = 0. 2s the feedback gain matrix of the

sampled data system is

G

(-0.442 0.183 -0.011 -0.0495 —0.777
w

-0.043 -0.025 0.696 -1.53 -0.013

-1.41 0.450 0.0178 0.019 0.031 -0.434)

with T = 0. 838 the feedback matrix is
G -0.332 0.095 -0.0045 0.0055 0.128 0.775
¥ \.0.032 0.026 -0.0015 -0.66 -0,125 -0,137
0.21 0.006 =0.0057 0.0017 -0.22 )
0.066 -0.51 0.548  -0.009 -0.025/ (5-4)

The simulation of the 12th order model of the Spinning Skylab (Table 2~1) is performed with
each of the above gains. Figures 5~1 through 5-3 show the results with T = 0.2s. These
figures show the state trajectories for Pyr Pas and ¢, Figures 5-4 through 5-6 show the
state trajectories for By ¢2; ¢, with T =0.8s, and Figure 5~7 shows the coatrol v, with
T = 0.8s, Itis apparent that the point by point state comparison method of partial

matching yields acceptable redesign with T = 0.2s as well as T = 0. 8s.
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IV. Conclusions

A practical onboarddigital attitude control system for a class of spinning
vehicles characterized by a rigid body and two connected flexible appendages has bee_n
designed and analyzed. A new approach to digital control system design, termed digital
redesign, has been utilized. The simplicity of application of this approach is indicated
by example. Whereas previously published reports have shown that the class of vehicles
under consideration can be stabilized suecessfully with continuous-data control systems,
this paper shows how that class of vehicles may in actual practice be stabﬂiied and actively
controlled with an onboard digital computer. A numerical example, using spinning Skylab
parameters, has been utilized to substantiate the conclusioﬂs.
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Figure 4-1. State Trajectories ch(t) and Xlé(t) for the Wobble Dynamics of the
Spinning Skylab.

20



15. 27,

Digital Redesign by the method of Partial Matching
11.27- H=[111111]

“'\E ] Control Law 1
& X{0) = [.01 .01 0 0 0 0]
= 1.2/ T=02s
&
b
8
.
8

0.00  40.00 = 80.00 120,00  160.00 200.00  240.00  280.00
TIX10 ) .
Figure 4-2, State Trajectories ch(t) and XZS(t) for the

Wobble Dynamics of the Spinning Skylab.
11. 90~

7.90

3.90+

-3
{t), *15‘“ X10 °)

States x1

0.00 4000  80.00 120000  160.00 20000 24000 28000
10}

Figure 5-1. State Trajectories ch(t) and Xls(t) for the 12th Order Model of the
Spinning Skylab, Digital Redesign (T = 0. 2s).
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Figure 5-2. State Trajectories X, (t) and Xoe (t) for the 12th Order Model of the
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Spinning Skylab, Digital Redesign (T = 0. 2s).
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Spinning Skylab, Digital Redesign (T = 0. 8s).
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Figure 5-5. State Trajectories ch(t) and Xzs(t) for the 12th Order Model of the

Spinning Skylab, Digital Redesign (T = 0. 8s).
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